

Alexandros Kotsas Senior Transportation Engineer

ORGANIZED BY

HOSTED BY

— milanoserravalle — — milanotangenziali —

Utilizing Connected Vehicle Data for Enhanced Decision Making

Compass Road Intelligence Platform

ORGANIZED BY

HOSTED BY

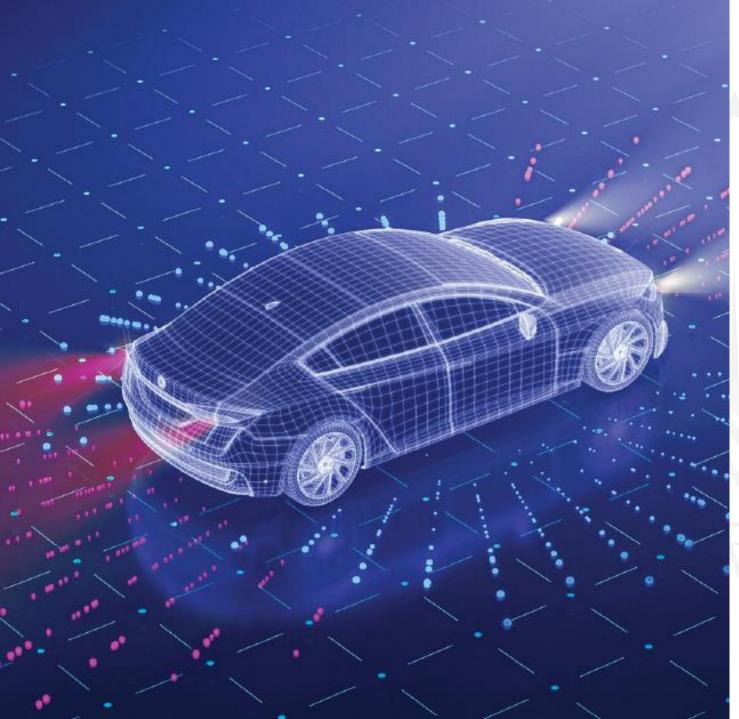
Contents

- Compass IoT
 - How it works
- Road Intelligence Platform
 - Road Safety & Near Misses
 - Path Analysis & Intersection Analysis
 - Origin Destination
 - Friction Loss & Pavement Quality
- Case studies
- Use cases

COMPASS

About Compass IoT

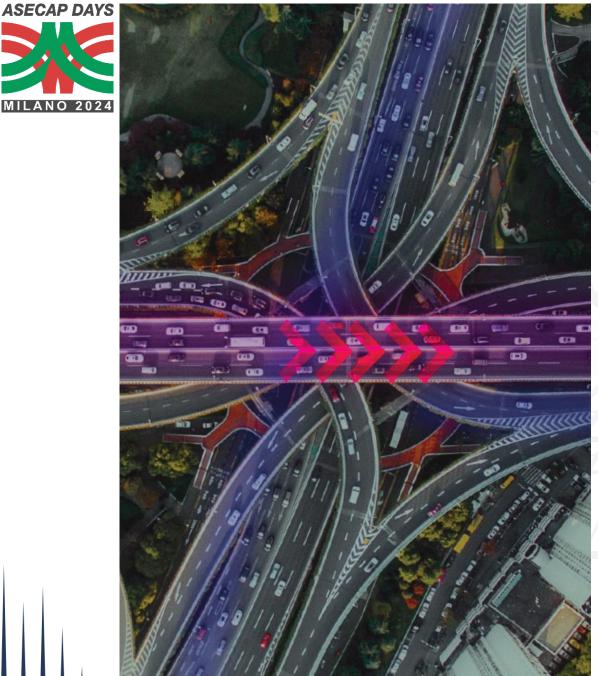
Compass IoT provides Connected Vehicle Data across the UK, Europe, Asia, and Australia. It provides billions of granular data points and analytical insights to over 80 customers across:


- State Government Transport Authorities
- Local Governments
- Highway Operators

Our software platform leverages both anonymised and identified data formats, depending on permissions and use cases (within the GDPR framework).

COMPASSIOT.COM.AU

00



Compass IoT

Traffic Management and Road Safety is **shifting** from a <u>Detect & Repair</u> to a <u>Predict & Prevent approach</u>

Better, Safer Roads with Connected Vehicle Data

- No hardware
- Proactive
- Real-time Connected Car Data
- Unique Datasets
- No traffic counts

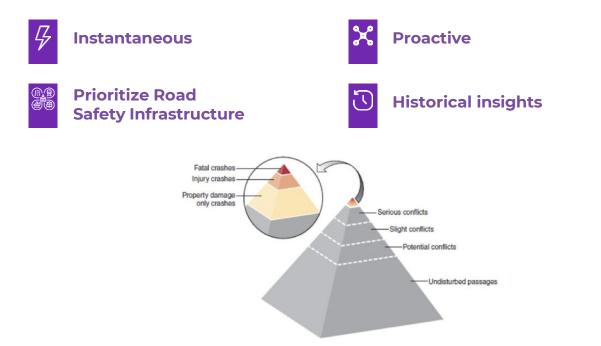
Compass IoT

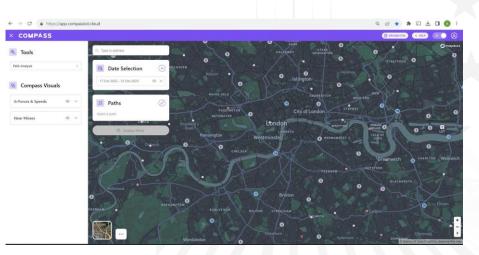
Road insights at your fingertips.

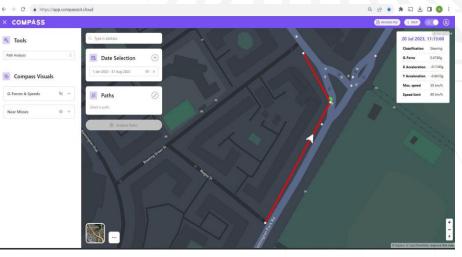
An Artificial Intelligence Web Platform

Uses "Natively Connected Vehicle" data to provide Country-wide Road Network Insights to Traffic Engineers, Road Safety Professionals and Road Operators.

- The Data from the Vehicles are ("natively") transmitted every 2 seconds from the Car's Head Unit.
- 2. Vehicle manufacturer connected vehicles are available with (but not limited to) **64 brands**, makes and models including:


1. Compass IoT Applications; Near Misses, Path Analysis, Origin Destination, Intersection Analysis

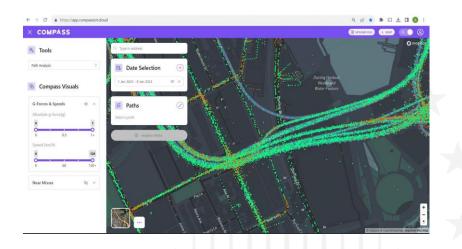



Identify high risk locations **before** accidents happen

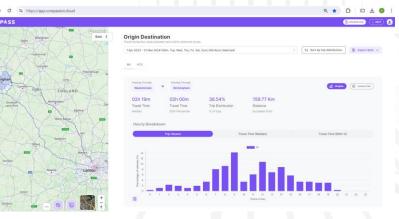
Road Safety - Near Misses

The Application identifies "**Near-Misses**" (a situation in which an accident/crash almost happened).

Path Analysis


Network-wide speed, predictive volume, travel times, pavement ride quality, and g-forces

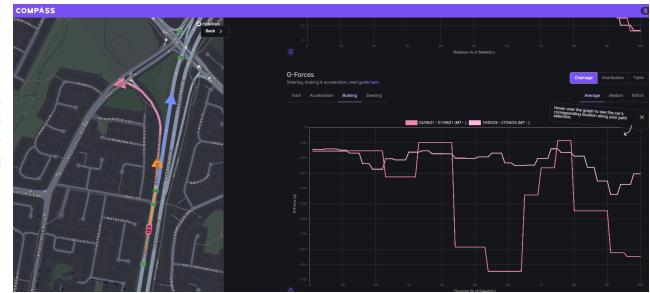
Origin Destination


Understand travel times, trip distribution, travel routes, speed, and hourly volumes

Intersection Analysis

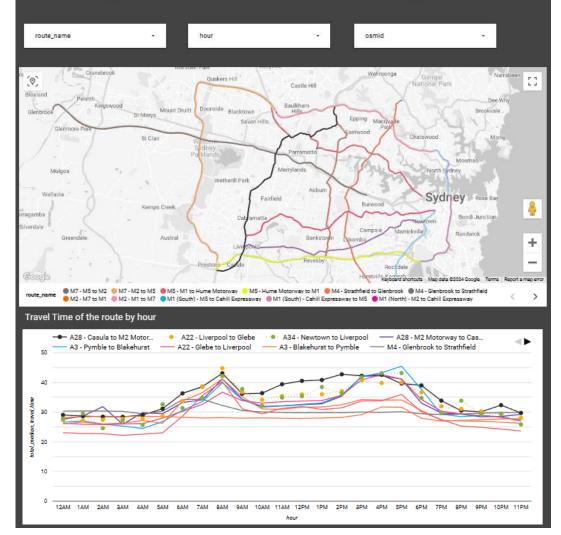
View the level of service and queue lengths

1-3 4-2 1-2


rsection Analysis

Transurban - Sydney M7 Motorway

- The road operator identified crashes at the approach of an exit ramp along the M7 motorway in western Sydney NSW
- There was evidence of spillback causing drivers to swerve or brake violently
- Through the platform high braking, swerving g-forces and near misses were identified along and on the M7 before the ramp
- The solution that was identified was signal phasing changing at the western end of the ramp
- Connected vehicle data showed the immediate impact of the improvements
- Speed and g-force metrics appeared within the acceptable limits



Transport of NSW - Motorway Network Congestion

- Congestion analysis for 8 motorways surrounding the whole
 Sydney Metropolitan area
- Identify where and when freight traffic was causing congestion
- Compass connected vehicle data provided congestion metrics such as travel times and speed reduction
- The data showed a clear indication of increase of travelling times,
 and reduction of speeds per direction
- A dashboard was created by the Compass science team, providing filters by section, by hour and osm id
- The insights allowed the road authority to improve the transport modelling for heavy vehicle movements

HV Congestion Metrics in NSW using travel time

Sydney MI - Congestion vs Rear End Near Misses

- Connected vehicle data provided to identify rear end crashes along congested sections of the road
- Near Miss Compass indicators was used to predict 'Rear End' Crashes along high volume congested roads
- 5-year Rear End Crash data along high volume motorways matched 'near miss' data
- High braking and some swerving g-force data combined with low speeds indicate congestion combined with potential rear end

crashes

• The evidence based analysis, using connected vehicle data provides a strong prediction indicator of future rear end crashes on specific section of the road network

Compass IoT - Use Cases

- 1. Before and After Surveys ("Plan" vs "Actual") in real time
 - Highway/Road Projects
 - Performance Evaluation
 - Traffic Impact Assessment Evaluation (Design vs Actual)
 - Mega Projects Operations Commencement
 - Real Time Traffic Engineering data for Decision making

2. Origin-Destination surveys

- Exact Routes
- Travel times
- Timing of trips
- Percentage of vehicle trips for each route

3. Input for Incident Management

- Accidents
- Unexpected Lane Closure
- Triggering of Emergency Services Action

4. Freight Management

- Traffic Volume
- Travel Time
- Input for Route Selection/Guidance between any two points

5. Savings in

- Maintenance Costs
- Network Management

6. Road Operations

- Planning input
- Toll charging
- Traffic monitoring during construction and maintenance

7. VMS + Push Info

- Travel times
- Incidents
- Impact on network
- 8. PPP Projects
 - Input to the Economic Appraisal
- 9. Prioritization of Investments and Interventions on Network Infrastructure
- 10. Evaluation of Roads and Highways for Autonomous Vehicles Readiness
- 11. EVs Infrastructure Planning

THANK YOU GRAZIE

Alexandros Kotsas akotsas@salfo.gr +30 697 307 1997

ENGINEERING & MANAGEMENT

HOSTED BY

ORGANIZED BY

