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An impactful challenge for 

all road operators
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components (i.e., CNN and OS). We observe that: (a) our

method provides the best accuracy for classes 1, 3 and 5;

(b) it is competitive with the pre-OS for class 4 and (c) it is

1.33% less accurate than the pre-OS result for class 2. While

the performance of both pre and post-OS are very poor for the

class 1, they are efficient for class 2. Particularly, the pre-OS

performs efficiently for classes 2 and 4. Comparing the two

OS, we observe that the pre-OS is better than the post-OS for

classes 2-5 and slightly less accurate for class 1. Indeed, this is

due to the compromise on accuracy between classes 1 and 2.

On the other hand, while the CNN model performs efficiently

for classes 1, 2 and 5, its performance is relatively lower for

classes 3 and 4. This is due to the fact that the vehicle images

from these two classes are often occluded (only frontal part

is visible) because of the camera placement and perspective

of the toll collection lane. The OS performs better for these

two classes due to its accurate measurement of the number of

axles and the height of vehicles.

TABLE IV: Analysis of the accuracy (%) w.r.t. individual

vehicle categories. Boldface means best result in each column.

1 2 3 4 5 Total

Proposed 99.09 97.89 94.86 98.50 100.00 98.22

PRE OS 24.95 99.22 93.94 98.82 92.01 75.11

POST OS 26.14 98.14 86.65 95.03 91.86 73.85
CNN 97.44 98.16 80.43 85.48 100.00 94.85

Table V presents the details w.r.t. per-class precision ob-

tained by the proposed method and its individual components,

i.e. the share of cases when prediction was true for the

fixed prediction label. We see that proposed method gives

best precision for all classes except for class 1, where it

is outperformed by the CNN component (97.82 vs 98.63

correspondingly).

TABLE V: Analysis of the precision (%) w.r.t. individual

vehicle categories. Boldface means best result in each column.

1 2 3 4 5

Proposed 97.82 98.63 97.63 96.74 100.00

PRE OS 90.14 90.01 96.91 96.09 99.19
POST OS 89.18 89.28 94.64 94.95 99.51

CNN 98.63 94.83 83.37 90.02 99.92

Now in order to gain further insights on the classification

performance for each vehicle category, we analyze the con-

fusion matrix of our proposed method, which is presented in

Table VI. We observe that:

• Our method performs very well on class 1, where the

existing system (i.e., OS) fails significantly. It only makes

0.9% error which are misclassified as class 2.

• For class 2 it produces 2.1% error, where 1.8% vehicles

are misclassified as class 1 and 0.3% vehicles are mis-

classified as class 3.

• For class 3 it produces 5.1% error, where 0.07% vehicles

are misclassified as class 1, 1.84% vehicles are misclas-

TABLE VI: Confusion matrix computed from theclassification

results of the proposed method.

True Predicted class
class 1 2 3 4 5 All Recall

1 3594 33 0 0 0 3627 99.09
2 79 4260 13 0 0 4352 97.89

3 1 24 1236 42 0 1303 94.86

4 0 2 17 1248 0 1267 98.50

5 0 0 0 0 1326 1326 100.00

All 3674 4319 1266 1290 1326 11875

Prec. 97.82 98.63 97.63 96.74 100.00

Fig. 7: Illustration of the misclassified vehicle classes. Within

each parentheses (t, p), the first value t indicates the true class

label and the second value p means the predicted class label.

sified as class 2 and 3.22% vehicles are misclassified as

class 4.

• For class 4 it produces 1.5% error, where 0.15% vehicles

are misclassified as class 2 and 1.34% vehicles are

misclassified as class 3.

• For class 5 it successfully classified all vehicles.

Next we perform manual (with human observer) analysis

in order to visually inspect the misclassified results. Fig. 7

provides the illustration of several examples. From our manual

analysis we observe that: (a) class 1 ismisclassified due to the

presence of the closely located vehicles and the presence of

additional objects on top of it; (b) class 2 is misclassified

when it has a caravan attached with it and mostly due to

occlusion; (c) class 3 is misclassified due to occlusion and

poor lighting conditions; and (d) class 4 is misclassified due

to occlusion and theavailability of only the frontal view image.

These difficulties make the CNN classifier confused about the

true shape of the vehicle.

The above analyses indicate several weaknesses of our

proposed method. Particularly, our method exhibits most of its

Per-class accuracy obtained by Cyclope.ai method
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